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Fig. 1: We tested the passability of the quadruped robot in more than 20 kinds of 3D complex environments, indoor and
outdoor, without any external sensing devices such as radar, camera, etc., and our method showed good performance. In the
lower part of the image is an example of a quadruped robot traversing highland. It is worth noting that the obstacles are
unstructured and the robot can still traverse normally.

Abstract— Traversing 3-D complex environments has always
been a significant challenge for legged locomotion. Existing
methods typically rely on external sensors such as vision
and lidar to preemptively react to obstacles by acquiring
environmental information. However, in scenarios like nighttime
or dense forests, external sensors often fail to function properly,
necessitating robots to rely on proprioceptive sensors to perceive
diverse obstacles in the environment and respond promptly.
This task is undeniably challenging. Our research finds that
methods based on collision detection can enhance a robot’s per-
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ception of environmental obstacles. In this work, we propose an
end-to-end learning-based quadruped robot motion controller
that relies solely on proprioceptive sensing. This controller can
accurately detect, localize, and agilely respond to collisions in
unknown and complex 3D environments, thereby improving the
robot’s traversability in complex environments. We demonstrate
in both simulation and real-world experiments that our method
enables quadruped robots to successfully traverse challenging
obstacles in various complex environments.

I. INTRODUCTION

The natural environment is extraordinarily complex, char-
acterized by irregular terrains and unstructured obstacles in
three-dimensional spaces. Humans and animals rely on their
robust limbs to locomote through complex environments by
running, climbing, jumping, and altering their body postures.
This often necessitates real-time visual perception and depth
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of the surrounding environment to coordinate limbs to avoid
obstacles. However, in the real world, both humans and
animals have a limited field of vision, yet our limbs can move
well beyond our visual perception range. When limbs move
beyond the visual range or in environments where visual
perception is ineffective (such as at night or in dense forests),
perceiving environmental obstacles through proprioception
becomes crucial. Designing a controller for robots that can
navigate locomote through complex 3D environments and
effectively avoid obstacles without relying on visual or lidar
like external sensors presents a significant challenge.

In practical situations, humans and animals can rely on
the sense of touch on their skin to detect the presence of
obstacles around them. In robotic systems, this capability is
referred to as collision detection. However, tactile sensors
in robots are typically installed only in specific locations
(such as the soles of the feet or fingertips), which results
in the majority of the robot’s body being unable to directly
sense obstacles. Therefore, implementing collision detection
for each limb becomes critically important. By relying on
collision detection, robots can perceive unknown obstacles
and guide their limbs movements, such as navigating through
narrow spaces or finding paths in darkness. Ensuring that
robots can effectively detect and respond to collisions not
only enhances their autonomy but also ensures safety in
interactions and operations within these unpredictable en-
vironments.

For quadruped robots, perceiving obstacles in complex
three-dimensional environments poses a challenge. It re-
quires three phases: detecting collisions, perceiving potential
obstacles through the collisions, and replanning actions ac-
cordingly. Regarding collision detection, the current literature
categorizes the entire collision process of robots into seven
stages, referred to as the ”collision event pipeline,” including
pre-collision, detection, isolation, identification, classifica-
tion, reaction, and post-collision phases[1]. Among these,
collision isolation specifically refers to locating the collision
segment on the robot and its contact point. Most mature
collision detection and isolation methods are designed for
fixed-base robotic arms[2], [3], [4], [5], based on models or
preset thresholds. Their primary aim is to halt the robotic
arm in emergency situations to protect the operated object,
the robotic arm itself, or human safety during human-
robot interactions. However, these conventional methods are
incapable of sensing potential obstacles generated from col-
lisions, thus failing to redirect the robot’s motion planning.
Currently, end-to-end quadruped robot controllers based on
reinforcement learning perceive complex terrains through
proprioceptive observations, yet such methods are limited to
terrain perception and do not extend to obstacle perception
in three-dimensional environments[8], [9], [21], [22], [23],
[30], [33], [34], [35], [44], [45]. Recently, some studies have
used reinforcement learning to train quadruped robots for
extreme parkour[40], [41], [24], [25], [26], [27], [28], [29],
[31], [32], navigating through complex obstacles in three-
dimensional spaces. However, these studies rely on external
sensors, such as cameras, and have not proposed a solution

that relies solely on proprioceptive sensing.

A. Related Works

Existing collision detection methods can be primarily
classified into model-based methods or model-free methods.
[2], [3], [4], [5] detect collision by comparing the estimated
torques with predefined threshold. Among these, [2] proposes
a momentum-based disturbance observer method. In com-
parison to the GM(generalized momenta-based) method, the
MESO (modified extended state observer) method introduced
by [5] demonstrates improved collision force estimation
under similar noise levels in practical systems. Both methods
can locate the robot link with collision and provide direc-
tional information on the Cartesian collision force. However,
in practical robot applications, these model-based methods
require high precision in the robot’s model and are sensitive
to disturbances and loads.

During the collision isolation phase [1], achieving more
accurate localization of collision points/contact points relies
on external sensors, such as those based on acoustics [6]. In
model-free methods, approaches based on learning have also
been proposed, but they necessitate external sensors such as
laser rangefinders, cameras, and the collection of datasets
[7]. The work discussed above is based on robotic arms
with fixed bases. However, on robots with floating bases,
the processes of collision detection, isolation, and identifi-
cation become significantly more complex. This increased
complexity arises because of more DOF, and the movement
of these robots relies on continuous collision between their
feet and the ground.

Recently, methods for collision detection, isolation, and
identification in humanoid robots have been introduced [11],
[12], [13]. In [13], relying solely on proprioceptive sens-
ing, the authors combine and compare the GM approach
with an Force/Torque-sensor-based approach. However, these
methodologies have predominantly been tested in simulated
environments with flat terrain. In real-world applications
with robots, additional challenges such as communication
delays, sensor synchronization, and noise must be taken
into account. In the realm of body collision detection for
quadruped robots, prior model-based efforts have proposed
various state estimation techniques for the robot[14], [15],
[16], attempting to fuse different sensors for more accurate
state estimation [17]. Under conditions where only onboard
perception is available, Fink et al. propose a sensor-less
model based on kinematics to estimate the location of a
single contact point at the shin level in real robot[10].

In the domain of model-free methods, collision/contact
detection primarily involves processing sensor signals in
the frequency domain [18] or constructing classifiers using
machine learning approaches [19]. In [20], a deep learning-
based contact estimator is developed using only onboard per-
ception. However, these methods are predominantly applied
to estimate foot forces for quadruped robots and do not
consider the possibility of collisions at non-foot locations.
[8], [9] have trained implicit estimators within their policies,
treating external forces which applied to the robot as privi-
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Fig. 2: Teacher-student based two-stage training framework, where on the left is the schematic of the collision estimation.

leged observations. This enables the use of historical data to
inform subsequent movements. To the best of the authors’
knowledge, there has yet to be research that trains an explicit
estimator for collision detection and isolation, evaluates its
accuracy in observing collisions, and utilizes this estimator
to guide the robot’s movement across varying environments.

B. Contributions

To further enhance the locomotive capabilities of
quadruped robots without external perception, we have de-
veloped an end-to-end trained adaptive motion controller
for quadruped robots, extending their mobility into complex
three-dimensional environments. Our controller integrates
proprioceptive sensing and collision estimation to implicitly
imagine the features of obstacles in 3D spaces, enabling
precise collision detection, localization of collision points,
and agile collision responses and movements.

Our contributions are as follows:

• We introduced a collision estimator that utilizes his-
torical proprioceptive data to precisely estimate the
likelihood of collisions on each body part, guiding the
robot to develop targeted response strategies through
neural networks.

• We developed the concept of a Collision Domain and a
Hybrid Imagination Model to capture and estimate the
characteristics of three-dimensional obstacles, enhanc-
ing our method’s ability to classify diverse obstacles in
complex settings.

• We established a two-phase end-to-end training frame-
work for quadruped robots, employing a simple lin-
ear velocity reward with directional constraints. This
framework, relying solely on proprioceptive sensing,
enables agile movement in complex 3D environments
and demonstrates more robust locomotive performance
in simulations and real-world scenarios compared to
baseline methods.

II. METHOD

A. Task Formulation
We define the process of a quadruped robot traversing a

3D complex environment without the assistance of external
sensors as four stages: 1) encountering and colliding with
obstacles, 2) locating the specific position of the collision,
3) estimating the encountered obstacle, and 4) making a swift
response to overcome the obstacle. When traversing in 3D
complex environments, quadruped robots may unexpectedly
collide with obstacles. Due to the uncertainty of the contact
points, we first developed a collision detection estimator to
determine whether a collision has occurred and its specific
location. Our method of estimating encountered obstacles
distinguishes us from other studies[21], [22]: unlike the
traditional method of encoding terrain with elevation maps,
we introduced the concept of a 3D collision domain, aimed at
detecting obstacles that are about to come into contact with
the robot’s body. By combining the results of the collision
detection estimator and the robot’s proprioceptive abilities,
we can effectively predict obstacles within the collision
domain during actual movement. Based on this, the robot
can take appropriate actions through real-time estimation of
obstacles, effectively traversing various types of barriers.

B. Base Set
We model the environment as a Markov Decision Process

(MDP). An MDP is defined by a tuple(S,A, Pa, Ra), where
S represents the set of all possible states, and A represents
the action space, P (st+1|st, at) is the state transition func-
tion, indicating the probability of transitioning to state st+1

after taking action at in state st, and R(st+1|st, at) is the
immediate reward. The agent selects an action at from the
policy based on the current state st. For the state st and
action at, the MDP calculates the next state st+1 and reward
rt, and then provides feedback to the agent. The goal is
to select a policy that maximizes the cumulative sum of
discounted rewards, expressed as:

J(π) = Eπ

[ ∞∑
t=0

γtrt

]
(1)



Policy Network For the training of the policy πϕ(at|st),
we employ an actor-critic architecture. In this framework,
the actor improves its decision-making policy by maximizing
the expected return estimated by the critic. We utilize the
Proximal Policy Optimization algorithm(PPO) to efficiently
optimize the policy.

Action Space: The output of the policy is a 12-
dimensional tensor. This tensor, once multiplied by a spe-
cific action scale coefficient ascale, is amalgamated with a
predetermined array of initial standing joint angles θdefault.
This process culminates in the formation of the targeted joint
angles configuration:

θdesired = θdefault + at · ascale (2)

Finally, proportional derivative (PD) controller is used for
converting joint desired angle to joint torque.

State Space: For teacher policy, the state space st is com-
posed of proprioceptive observation ot, explicit observations
ĉt, v̂t, where ĉt is the estimate of collision information, v̂t is
the estimate of body linear velocity, and implicit observations
pt, et, refer to the latent variables obtained after the 3D
collision domain and privileged information are processed
through the encoders. Privileged implicit observation et
includes encoded body mass, center of mass, friction and
motor strength. The state space st is shown in the following
equation:

st =
[
ot ĉt v̂t pt et

]T
(3)

The structure of student policy is kept consistent with the
teacher policy, where et and pt are estimated using pro-
prioceptive observations. Specifically, in the first phase, we
employ Regularized Online Adaptation (ROA)[42] to train
a privileged information estimation module. In the second
phase, we obtain estimates of privileged implicit information
êt. Furthermore, in the second phase, we also train a hybrid
imagination module to obtain estimates of p̂t, as detailed in
section II.D.

Reward: Without the need for prior knowledge from
external sensors, previous work’s reward mechanisms [38],
[40], [41] often cannot be directly applied to the tasks in this
study. Our method primarily relies on observing the collision
domain to master strategies for overcoming various types of
obstacles. To ensure that the robot can smoothly traverse
in the direction that obstacles are placed, we have designed
an linear velocity tracking reward mechanism with heading
constraints:

rvel = Ldv
|
min(v · cos(θcmd

yaw − θyaw), v
cmd)

vcmd
| (4)

Ldv is a weight factor that represents the positive and
negative aspects of velocity, as follows:

Ldv
=

{
Kpositive , v · cos(θcmd

yaw − θyaw) > 0

Knegative , v · cos(θcmd
yaw − θyaw) < 0

(5)

The linear velocity reward with heading constraint ensures
that the robot moves along the direction of the obstacle

placement, thus preventing the robot from choosing to bypass
the obstacle. This design of Ldv stems from observations
made during the training process: when faced with difficult
obstacles, robots tend to adopt a policy of quickly bounc-
ing back to their original position, then approaching the
obstacle at a set speed and bouncing back again, which
easily leads to the policy falling into a local optimum.
Therefore, we included a penalty for negative velocity in the
speed tracking reward to prevent the robot from adopting
a rebound policy.Where both kpositive and knegative are
constant quantities, positive reward coefficient and negative
penalty coefficient respectively, the detailed values are in the
appendix. To enable the robot to sidestep through narrow
spaces and maintain a natural walking posture in normal en-
vironments, we introduced the following reward mechanism:

rPos = W1 · rGuidePos +W2 · rNaturalPos

= W1 · (|qrighthip + qlefthip |2 + |qfronthip − qbehindhip |2)
+W2 · |qdefaultdof − qdof |2

(6)

The pos reward consists of two parts, the GuidePos reward
does not directly limit the angle of the robot’s hip joint but
penalizes the sum of the angles of the left and right leg hips
to be zero and the difference in angles between the front and
back leg hips, ensuring that the robot’s limbs can always walk
perpendicular to the ground under any circumstances. This
not only facilitates the generation of sidestepping actions
but the NaturalPos reward ensures that the robot maintains
a natural walking posture in normal environments. W1,W2

corresponds to the weights of the two-part rewards, the
detailed values are in the appendix.

Although our method relies on collisions to perceive en-
vironmental obstacles, we have found that adding a collision
penalty during actual training can accelerate the convergence
of the policy. This is because, although collisions are neces-
sary for perceiving obstacles, they should be avoided as much
as possible during the traversal of obstacles. Therefore we
refer to the collision penalty as follows, Fcollision is the set
of forces applied to the center of mass of each link.

rcollision = Fcollision (7)

Furthermore, we enhance the quadruped robot’s overall mo-
bility through an auxiliary reward mechanism refer to [38].

Fig. 3: Schematic of the collision domain

C. Collision Estimator

In real-world applications, since robots cannot directly
recognize collisions and their specific locations, we propose



using a collision estimator φ to estimate collision information
online. In this study, collision information is simplified
into a Boolean vector ct, indicating whether each link has
encountered a collision. In the simulation environment, we
cannot directly obtain ct , so we determine that a collision has
occurred if the force on each link exceeds a certain threshold.
This threshold needs to be set according to different robots
and the actual environment they are in. The aforementioned
discussion indicates that most of the existing work on colli-
sion detection relies on dynamic information from a single
timestep, which is effective for detecting collisions involving
legs or arms. This is because collisions with legs and arms
usually immediately reflect in the dynamics parameters, such
as sudden changes in torque and acceleration, which can
be captured through data within a single timestep. However,
collisions involving the torso and joint parts are difficult to
accurately capture due to the dispersed effects on dynamics
parameters and response delays, and require analysis using
long time series information. The collision estimator uses
the robot’s historical observation data to generate ĉt, which
is the estimated value of the actual collision vector ct.

ĉt = φ(ot−k, ot−k+1 : ot) (8)

Using sequence information can better estimate the source
of collisions. In this paper, we used historical observation
data from 10 timesteps. The length of the historical record
should not be too long, as it may lead to overfitting. The
selected length of the historical record should be sufficient
to represent the sum of the occurrence of a complete colli-
sion event and the response time generated. The impact of
history sequence on collision estimation is detailed in the
experimental section.

Given that collision information is only divided into two
states: collision occurred and collision did not occur, and
the total probability of these two states sums to 1, we do
not need to concern ourselves with a specific value vector,
but only need to output a probability value. Therefore, the
collision estimation problem can be simplified into a binary
classification problem. Our method only requires the use of
the current moment’s collision state ct and its observation
history, all of which can be obtained through simulation.
The architecture of the collision estimator includes a linear
layer, three convolutional neural network (CNN) layers, and
another linear layer. The CNN layers apply convolution over
the time dimension in the observation history to capture the
temporal correlations in the input data. The flattened output
processed by the CNN layers goes through another linear
layer and applies a Sigmoid activation function, thereby
producing an estimate of the collision state ĉt. This collision
estimator is trained through supervised learning, with the
goal of minimizing the following BCE loss function:

LEst
φ = −(ctlogĉt + (1− ct)log(1− ĉt)) (9)

D. Implicit Collision Domain imagination

To better perceive and respond to obstacles in the complex
3D environments, this study introduces the concept of a

collision domain, which is an area around the robot’s body
containing information about obstacles, as shown in Fig. 3.
Specifically, we have set a cuboid sampling domain centered
on the robot, see Table 1 for specific values. A boolean value
indicates whether each point of the grid is inside an obstacle
to detect imminent collisions. In complex environments such
as dense forests and low visibility areas where external
sensors like lidar and cameras often fail, proprioception
becomes the sole means of understanding the collision do-
main. Therefore, this study proposes a method that uses only
proprioception to deeply estimate the characteristics of the
collision domain.

Previous research has shown that terrain characteristics
can be estimated using only proprioception[21], [22]. In
this study, we extend this idea to understanding features in
3D space, that is, the implicit imagination of the collision
domain. Here, we propose a two-stage training method that
combines implicit collision domain imagination to develop
a policy effective in traversing complex environments. We
combine proprioception with the aforementioned collision
estimator to comprehensively estimate the potential attributes
of the collision domain. This approach is better suited to
adapt to the cognitive uncertainties present in real-world
scenarios than methods that directly input proprioceptive
sensing.

The specific training framework of our method is shown in
Fig. 2. In the first phase, we use an encoder to extract latent
features from the collision domain, inputting the resulting
latent variable pt directly into the teacher policy to train the
robot. In the second phase, we supervise the training of the
student policy using the teacher policy. Since the student
policy cannot directly access pt, we propose a hybrid imag-
ination model that combines proprioceptive observations
ot with estimates ĉt from the collision estimator, feeding
them into a GRU pipeline to estimate latent features of the
collision domain. The advantage of the hybrid imagination
model is that, after embedding explicit collision estimates,
the GRU module’s temporal feature extraction mechanism
can accurately represent the process of the robot interacting
with obstacles. This allows for a dynamic estimation of
environmental obstacle information, further estimating the
latent features of the collision domain, thereby improving
the robot’s response capability after encountering obstacles.

III. EXPERIMENTS
A. Training set up

The simulator utilized for training the policy is Isaac
Gym[37], supplemented by the prior open-source libraries
Legged Gym and RSL-RL[38] for. We conduct parallel
training across 4,096 domain-randomized environments on a
single NVIDIA RTX 4090 GPU, teacher policy engaging in
approximately 12000 training iterations and student policy
engaging in not more than 10000 training iterations, each
comprising 24 steps, with the policy operating at a control
frequency of 50Hz.

To accurately reflect the diversity of obstacles encountered
in the real world, we categorize four types of obstacles,
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TABLE I: Curriculum Learning: Obstacle Configuration and
Robot Parameter Settings.

Obstacle
Properties Train Ranges (m) Test Ranges (m)

([leasy , lhard]) ([leasy , lhard])

Highland [0.05, 0.55] [0.25, 0.55]
Barrier [0.31, 0.00] [0.16, 0.00]
Tunnel [0.40, 0.25] [0.38, 0.25]
Crack [0.38, 0.28] [0.32, 0.28]

Parameters
Properties Go2 Body (m) Collision Domain (m)

length 0.71 0.90
width 0.32 0.40
height 0.40 0.50

which included: Highlands, which are climbable terrains
directly ahead, as shown in Fig. 5.; Barriers in Fig. 7,
obstacles located on the left or right side of the robot;
Tunnels, low tunnel-like obstacles that the robot can pass
through by lowering its body height like Fig. 4; and Cracks,
narrow passages shown in Fig. 7. Additionally, we implement
a strategic obstacles curriculum designed to enhance the
policy’s generalization capabilities and convergence rate.

B. Hardware and Depoly

In our research, we employ the Unitree Go2 robot to
assess the efficacy of the collision detection estimator and the
policy’s response to collisions. The body parameters of Go2
are shown in Table 1, which serves as an important reference
for setting up our training environment. For the deployment
of policies on real robots, these policies are executed on the
onboard NVIDIA Jetson Orin Nano of the Go2. Furthermore,
[36] provides an exemplary framework that facilitates the
straightforward transplantation of these policies to the Go2
robot.

C. Compared Method

We compare our collision estimation and response policy
with several baseline and ablations as follows.

• Ours w/o R.V: We use the ordinary linear velocity
tracking reward [38] instead of the linear velocity track-
ing reward with heading constraints.

• Ours w/o Col: Training without collision estimator.
• Ours w/o H.O: Training collision estimator without

history observation.
• Baseline: Training directly with only proprioception.
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Fig. 5: Collision response strategies when facing a highland.

• RMA[21]: Employing an Adaptation Module to Es-
timate All Privileged Observations Including Terrain
Height from Historical Data, Harnessing Potential In-
formation.

• WTW(Walk-These-Ways)[36]: Leverages expert
knowledge realize Multiplicity of Behavior.

• Go2-default: Go2 default controller based on NMPC,
which only compared in real experiment.

• Go2-special: Go2 special controller based on NMPC,
which only compared in real experiment.

D. Simulation Experiments

Baselines and Ablations. We conducted a comparative
analysis of our method against baseline approaches such as
RMA and WTW, which are two typical methods in this
domain. The RMA approach extracts information from 2D
elevation maps and privileged data to adapt to the envi-
ronment, whereas WTW relies on expert knowledge to set
rewards and manually adjust the robot’s posture for obstacle
traversal. In addition to RMA’s framework, we implemented
our reward function. As shown in TABLE II, the 2D elevation
maps used in RMA struggle to capture the complete features
of 3D obstacles in the environment, resulting in significantly
lower performance across multiple tasks compared to our
method. WTW can control the robot’s height, which allows
the robot to crawl to traverse Tunnel obstacles but lacks
the ability to climb or sidestep, failing to navigate complex
obstacles like Highland, Crack, and Barrier.

Comparing our method with Ours w/o R.V, we found
that the velocity reward without heading direction constraint
failed to traverse Highland and Crack obstacles, and also



TABLE II: We test our method against several baselines and ablations in the simulation with obstacle of varying difficulty
(see in Table I). We initialized a total of 4096 robots and randomly distributed them across the map . We collected data on
the success rate (the ratio of the number of robots that failed to traverse obstacles to the total number of robots) and the
average movement distance which was normalized to [0, 1] after a duration of 10 seconds.

Success Rate ↑ Average Displacement↑
Highland Barrier Tunnel Crack Highland Barrier Tunnel Crack

Baseline 0.00 0.12 0.00 0.00 0.004 0.132 0.005 0.006
RMA 0.27 0.61 0.67 0.53 0.256 0.550 0.614 0.497
WTW 0.00 0.11 1.00 0.00 0.004 0.103 1.000 0.005

Ours w/o R.V 0.00 0.31 0.30 0.00 0.003 0.197 0.218 0.005
Ours w/o Col 0.89 0.81 0.89 0.76 0.769 0.771 0.898 0.625
Ours w/o H.O 0.93 0.87 0.94 0.83 0.796 0.793 0.959 0.711

Ours 0.94 0.92 0.96 0.89 0.821 0.853 0.979 0.798

Teacher 0.99 1.00 1.00 1.00 1.000 1.000 1.000 1.000

performed poorly with Barrier and Tunnel. This is because
the previous method’s velocity reward was solely dependent
on the fixed-base linear velocity, leading robots to quickly
circumvent rather than traverse obstacles, a common policy
during training due to the lower exploration difficulty of
avoiding obstacles.

The comparison between Ours and Ours w/o H.O high-
lights the importance of historical information for collision
estimation, particularly when traversing Barrier and Crack
obstacles. These obstacles often involve more collisions at
the hip joint, and estimating collisions from a single time-
point is challenging. Furthermore, the comparison suggests
that the inclusion of collision information significantly im-
proves the robot’s performance in navigating various com-
plex obstacles. Collision information aids the robot in in-
ferring the characteristics of the obstacle from the contact,
enabling further appropriate responses.

Effects of Implicit Collision Domain imagination. To
thoroughly investigate the impact of Implicit Collision Do-
main imagination on the task and to quantify the efficacy of
the Hybrid Imagination Model, we employed the t-distributed
stochastic neighbor embedding (t-SNE) to reduce the dimen-
sions of the output from the Hybrid Imagination Model.
As illustrated in the Fig. 6., we discovered that the latent
representation of the Collision Domain estimated by the
Hybrid Imagination Model shows a clear distribution across
different obstacle categories. This indicates two points: 1.
The Collision Domain can effectively extract features of
obstacles in complex three-dimensional environments. 2. The
Hybrid Imagination Model can efficiently estimate the latent
representation of the Collision Domain, thereby possessing
sufficient environmental information to aid the robot in re-
sponsive decision-making in complex settings. Additionally,
the t-SNE plot shows that some overlap between the Barrier
and Crack obstacles, suggesting that the body locations
where the robot collides with these two types of obstacles
are often similar, which also indirectly shows that the latent
representation of the Collision Domain accurately reflects the
actual situation.

Fig. 6: The t-SNE visualization for Collision Domain in the
latent space.

E. Real-World Experiments

Qualitative Experiments. In an indoor environment, we
conducted a series of experiments aimed at exploring differ-
ent obstacles through collision detection including highlands,
barriers, tunnels, cracks to qualitatively analyze the impact
of collisions on a robot’s ability to traverse unknown obsta-
cles.In exploring the Highlands,as shown in Fig. 5., the robot
first used its head collision detection to perceive potential
highland obstacles. Subsequently, the robot extended its
right front foot for further exploration. Upon detecting a
collision with the right front foot, the robot determined the
presence of a highland obstacle and chose to overcome it
by climbing. When facing a Barrier, the robot detected the
obstacle through a collision on the left side of its head. Then,
by probing with its front feet, it confirmed the obstacle was
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on the left while the right side was clear, thus, the robot
chose to turn right to bypass the obstacle, as shown in Fig.
7.. In the Tunnel obstacles, after an initial head collision
detection, the robot did not detect any horizontal collisions
with its hands, leading to the determination that the obstacles
was a tunnel. The robot then successfully passed through by
lowering the height of its torso and hips, as shown in Fig. 4.
In the exploration of Crack obstacles, the robot’s left front
hip and left front foot first detected a collision. Attempting
to move right, the robot encountered another collision at the
right front hip, thereby determining the obstacles to be a
crack. The robot chose to adjust the roll axis angle of its
body to navigate through the obstacle, as shown in Fig. 7.

Additionally, we tested our approach in complex wild
scenarios, as depicted in Fig. 1., where the robot traverse
unstructured rocky obstacles. This presents a significant
challenge as both collision points and potential footholds
are unpredictable, making it difficult for the robot to identify
obstacle characteristics. To our knowledge, there have been
almost no other works that have achieved similar results.
But our team managed to traverse wild scenarios which
has various obstacles without external sensors, achieving
a success rate of over 50%. More details on these wild
experiments are available in the accompanying video.

Quantitative Experiment. As depicted in the Fig. 8.,
we have quantitatively compared our method with three
other strategies: Go2 Default, Go2 Special, and WTW, in
real-world scenarios. The data shown represents the average
success rate of the robot when confronting various types of
obstacles at different levels of difficulty, across 10 trials,
aiming to showcase the obstacle negotiation capability of
our approach in actual environments. It is clear from the
figure that experiments utilizing our policy exhibited superior
performance in almost all obstacle types. Notably, in the
specific scenario of navigating through Tunnels, the WTW
policy performed slightly better, primarily due to its use
of human knowledge priors and manual adjustment of the
robot’s height for successful passage. In contrast, our method
is adaptive, which may lead to certain errors in estimating
environmental obstacles, resulting in a degree of perfor-
mance degradation. However, this performance degradation

is within an acceptable range.

IV. CONCLUSION
We present a novel quadruped robot collision response

motion controller based on collision domains and explicit
collision estimator, capable of precise collision detection,
localization, and agile response in unknown and complex
3D environments, solely relying on proprioception. Com-
prehensive evaluations in both simulated and real-world
environments have demonstrated the precision of our col-
lision detection technique, the robustness of our collision
response, and the effective traversability in complex envi-
ronments.However, a limitation of this work is that during
the simulation training process, our approach necessitates a
relatively accurate robot collision model, as it significantly
dictates the robot’s capability to perceive environmental
obstacles. However, crafting such an accurate collision model
in the simulation phase demands substantial computational
resources, and the calculation of collision contact forces in
complex models introduces certain errors. We look forward
to finding a solution to this challenge in the future. Addi-
tionally, in our forthcoming research, we aim to integrate a
recognition network to enhance the accuracy of estimating
both the direction and magnitude of forces. This will enable
us to precisely mitigate potential disturbances and imple-
ment adaptive control across environments characterized by
diverse stiffness and contact elasticity.
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Appendix

A. Reward Function

Reward items are listed in TABLE III. The task reward
helps the robot adapt to the specific task scenarios, and the
details of the design (4,6,7) is shown in II.B above. Where we
set the Goal Velocity’s reward coefficient Kpositive to 1 and
the penalty coefficient Knegative to -3. This set of parameters
was optimized based on our comprehensive simulation exper-
iments. Additionally, we designed the regularization reward
referring to [46], adjusted it according to the type of robots
and task scenarios.

TABLE III: Reward Function

Term Equation Weight

Task reward

Goal Velocity rvel(4) 1.5

Yaw Angular Velocity exp(−4|ωcmd
yaw − ωyaw|) 0.5

Hip Position rPos(6) -0.5(W1=W2=0.5)

Collision rcollision(7) -10.0

Regularization reward

Z Velocity v2
z -0.5

X&Y Velocity ω2
x + ω2

y -0.01

Dof Acceleration
∑12

i=1 q̈2i −2.5 ∗ 10−7

Action Rate
√∑12

i=1(at − at−1)2 -0.1

Delta Torques
∑12

i=1(τt − τt−1)
2 −1.0 ∗ 10−7

Torques
∑12

i=1(τt)
2 −1.0 ∗ 10−5

Dof Error
∑12

i=1(q − qdefault)
2 -0.04

Feet Stumble |Fhor
feet| > 4 ∗ |Fver|

feet
-1

Dof Position Limits
∑12

i=1(q
out
i qi>qmax∥ qi<qmin

) -10.0

B. Additional Training Details

Network Architecture Our learning framework’s overall
network architecture includes not only the components
shown in Figure 2 but also some additional modules not
depicted in the figure. The teacher policy consists of six Mul-
tilayer Perceptron (MLP) parts: collision domain encoder,
collision estimator, privileged information encoder, privi-
leged information estimator, velocity estimator, and teacher
policy network. Where ht denotes collision domain infor-
mation and gt denotes privilege information. The privileged
information encoder supervises the privileged information
estimator and optimizes learning using the ROA method.
Privileged Estimator’s network type is also a CNN with
a similar structure to the Collision Estimator. The student
policy includes five parts: the collision estimator, velocity
estimator, and privileged information estimator from the
teacher policy, along with the hybrid imagination model
comprised of a Gated Recurrent Unit (GRU) network and an
MLP-based student policy network. Table I provides more
details on each layer.
Training course Course learning is crucial for robots to ef-
fectively travel obstacles in complex environments. Without
this capability, robots would struggle to learn effectively.
We have implemented the velocity-travel course training

TABLE IV: Network architectures
Module Inputs Hidden Layers Outputs

Teacher policy

Collision Domain Enc ht [256, 128, 64] pt

Collision Estimator ot−10, ..., ot−1, ot / ĉt

Privileged Encoder gt [64, 32] et

Privileged Estimator ot−5, ..., ot−1, ot / êt

Velocity Estimator ot [128, 64] v̂t

Teacher Network ot,pt, ĉt, et, v̂t [512, 256, 128] at

Student policy

Hybrid Imagination Model ĉt, ot [128, 64] p̂t

Student Network ot, p̂t, ĉt, êt, v̂t [512, 256, 128] ât

method[43], [46], where the robot’s linear velocity is ran-
domly sampled within the range of [0, 1]. If the robot’s travel
distance in one iteration exceeds half of the preset heading
speed integral, the terrain difficulty is increased; otherwise,
it is decreased. The levels of terrain difficulty are detailed in
TABLE I.

Hyperparameter Value

Discount Factor 0.99

GAE Parameter 0.95

Timesteps per Rollout 21

Epochs per Rollout 5

Minibatches per Epoch 4

Entropy Bonus (α2) 0.01

Value Loss Coefficient (α1) 1.0

Clip Range 0.2

Reward Normalization yes
Learning Rate 2e−4

# Environments 4096

Optimizer Adam

TABLE V: PPO hyperparameters.

Policy training and Imitation training We use PPO with
hyperparameters listed in TABLE V to train the teacher
policy. We regard the process of teacher policy supervising
student policy learning as imitation learning process, at
and ât are the action vectors from the teacher and student
respectively in an actor network. The gradient of the loss
L can be defined as the sum of the squared norms of the
difference between at and ât over all actions:

LImitation = ∥πteacher(·|s)− πstudent(·|s)∥22
Here, ∥·∥2 denotes the L2 norm. Where πteacher(·|s) is the
action from the Teacher policy and πstudent(·|s) is the action
from the Student policy .
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